基因編輯系統(tǒng)是基于古細(xì)菌抵御外源核酸入侵的免疫機(jī)制為基礎(chǔ)開(kāi)發(fā)出來(lái)的一種新型的基因編輯技術(shù)。相對(duì)于傳統(tǒng)的基因編輯技術(shù)(sRNAi等),該技術(shù)具有更加高效、操作簡(jiǎn)單、細(xì)胞毒性小等特點(diǎn)。目前,CRISPR/Cas9基因編輯技術(shù)已在腫瘤研究的諸多方面中得到應(yīng)用,如腫瘤相關(guān)基因的功能、構(gòu)建動(dòng)物腫瘤模型、篩選腫瘤細(xì)胞表型及耐藥相關(guān)基因以及腫瘤的基因治療等諸多方面。
隨著技術(shù)的進(jìn)步,描繪不同組織在空間結(jié)構(gòu)上的細(xì)胞異質(zhì)性和發(fā)育動(dòng)態(tài),是腫瘤研究的一個(gè)新方向。每個(gè)細(xì)胞都和臨近細(xì)胞有著相似的轉(zhuǎn)錄組或基因組特征,但多細(xì)胞排列在一起,卻能闡述復(fù)雜多變的時(shí)空模式。
這里,我們介紹新發(fā)在Cell的一篇文章《Spatial CRISPR genomics identifies regulators of the tumor microenvironment》[IF:66],作者開(kāi)發(fā)了一種新的空間功能基因組學(xué)算法——Perturb-map,用于在小鼠的肺癌模型中敲除基因,同時(shí)評(píng)估每個(gè)基因敲除后如何影響腫瘤生長(zhǎng)、組織病理學(xué)和免疫成分。同時(shí),將Perturb-map和空間轉(zhuǎn)錄組學(xué)配對(duì),以對(duì) CRISPR 編輯的腫瘤進(jìn)行無(wú)偏分析。
一、背景
空間分辨率的單細(xì)胞和區(qū)域測(cè)序表明,遺傳上不同的亞克隆,可能存在于腫瘤臨近,并且可以具有不同的腫瘤微環(huán)境;然而,特殊基因是如何影響腫瘤微環(huán)境的?鄰近的克隆是怎么影響其他克隆的,這些問(wèn)題尚沒(méi)有確切的定義。雖然已經(jīng)確定了一些參與協(xié)調(diào)腫瘤微環(huán)境的基因,但許多基因在影響不同腫瘤的結(jié)構(gòu)和免疫組成方面的潛在作用尚未確定。
識(shí)別控制細(xì)胞排列的基因是一項(xiàng)挑戰(zhàn),腫瘤微環(huán)境的組成是復(fù)雜的,許多不同類(lèi)型的免疫和非免疫細(xì)胞的比例、位置、運(yùn)動(dòng)都是相互依賴(lài)的因素。很多基因的功能是依賴(lài)于組織背景以及與特定細(xì)胞類(lèi)型和結(jié)構(gòu)的空間鄰近性。因此,確定腫瘤中表達(dá)的數(shù)百個(gè)基因中的哪一個(gè)會(huì)影響腫瘤微環(huán)境(TME)的組成和分布,需要進(jìn)行體內(nèi)研究。
為了擴(kuò)大基因功能的研究,pooled CRISPR篩選越來(lái)越多的用于單細(xì)胞測(cè)序方法【Fig.S1】,如Perturb-seq;高維細(xì)胞術(shù)通過(guò)更全面地測(cè)量由基因擾動(dòng)引起的分子和表型變化,進(jìn)一步推進(jìn)了CRISPR篩選。
Ref:Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015 May
然而,雖然pooled篩選方法可以實(shí)現(xiàn)高通量,但現(xiàn)有技術(shù)在體內(nèi)研究方面存在局限性。如,分離組織進(jìn)行分析。這在很大程度上限制了可以通過(guò)pooled篩選探測(cè)到的細(xì)胞內(nèi)在過(guò)程的生物學(xué)功能,因?yàn)橐坏┙M織均質(zhì)化,就無(wú)法評(píng)估基因擾動(dòng)的細(xì)胞外效應(yīng)。
這里,作者描述了一種體內(nèi)的空間功能基因組的方法,叫做Perturb-map。該方法基于一種蛋白質(zhì)barcode系統(tǒng)——Pro-Code,使用少量線(xiàn)性表位的三聯(lián)體組合,創(chuàng)建一組更高階的獨(dú)特barcode,標(biāo)記表達(dá)不同的CRISPR gRNA細(xì)胞。因此該方法可以在單細(xì)胞分辨率和組織規(guī)模的腫瘤內(nèi)檢測(cè)到120種不同的Pro-Code表達(dá)的癌細(xì)胞群。作者在肺癌小鼠模型中使用Perbturb-map并行敲除35個(gè)基因,同時(shí)評(píng)估每個(gè)基因敲除后如何影響腫瘤生物學(xué)的關(guān)鍵參數(shù),如生長(zhǎng)、組織病理學(xué)、免疫組成和分子狀態(tài)。
二、數(shù)據(jù)和代碼
數(shù)據(jù):
代碼:https://github.com/srose89/PERTURB-map
三、Highlights
四、結(jié)果
1.通過(guò)多重成像原位檢測(cè)肺和乳腺腫瘤中的 120 個(gè) Pro-Code 群體
在先前的研究中,作者描述一個(gè)基于蛋白質(zhì)的細(xì)胞bar-coding系統(tǒng)——Pro-Codes。該系統(tǒng)由支架蛋白、dNGFR融合的線(xiàn)性表位的三聯(lián)體組合組成。由于ProCodes可以被抗體檢測(cè)到,作者假設(shè)可以通過(guò)成像來(lái)解決。為了測(cè)試這一點(diǎn),生成表達(dá)Pro-Codes的癌癥線(xiàn)。使用一組編碼84或120個(gè)不同Pro-Codes的慢病毒載體 (LV) 轉(zhuǎn)導(dǎo)小鼠的肺癌細(xì)胞 (KP細(xì)胞系) 和乳腺癌細(xì)胞 (4T1細(xì)胞系) 。
然后,作者在小鼠靜脈中注射KP細(xì)胞,或者在乳腺脂肪墊中注射4T1細(xì)胞。經(jīng)過(guò)兩周后,在注射4T1細(xì)胞的搜集負(fù)瘤組織;4周之后,在注射KP細(xì)胞的小鼠中收集負(fù)瘤組織。使用之前開(kāi)發(fā)的用于高維成像的方法——MICSSS(單張載玻片上的多重免疫組織化學(xué)連續(xù)染色),對(duì)每個(gè) Pro-Code 表位進(jìn)行染色?;蛘?,在組織切片在多路離子束成像 (MIBI) 上成像。
這兩種技術(shù)都可以在亞細(xì)胞分辨率下有效地檢測(cè)每個(gè)表位,因?yàn)榭梢詸z測(cè)細(xì)胞膜上的表位,正如膜定位 dNGFR 支架所預(yù)期的那樣。 因此,能夠在空間上解析乳房[Fig.1ab]和肺[Fig.1c]腫瘤模型中的多達(dá)120個(gè)Pro-Code。
利用核定位mCherry熒光蛋白作為支架創(chuàng)建了一組新的165個(gè)Pro-Codes,證實(shí)了CyTOF對(duì)每個(gè)核Pro-Code(nPC)的檢測(cè)。接下來(lái),作者使用120個(gè)nPC轉(zhuǎn)導(dǎo)4T1和KP細(xì)胞,重復(fù)上述實(shí)驗(yàn)。結(jié)果表明,能夠在肺和乳腺腫瘤模型中檢測(cè)到120個(gè)獨(dú)特的nPC中的每一個(gè),并發(fā)現(xiàn)它們定位于細(xì)胞核[Fig.2a]。
由于膜結(jié)合的Pro-Codes(memPC)和核Pro-Code(nPC)具有不同的亞細(xì)胞定位,作者假設(shè)可以在相同的細(xì)胞中組合使用它們。使用56 個(gè)memPC的庫(kù)轉(zhuǎn)導(dǎo)4T1,對(duì)dNGFR+細(xì)胞進(jìn)行分類(lèi),然后使用相同的56個(gè)nPC庫(kù)再次轉(zhuǎn)導(dǎo)。作者發(fā)現(xiàn),相同細(xì)胞中,可以在細(xì)胞核和細(xì)胞膜上識(shí)別不同的ProCode。
2.Pro-Code 成像顯示KP肺和4T1乳腺腫瘤的克隆性
通過(guò)對(duì)兩種腫瘤類(lèi)型的Pro-Codes進(jìn)行成像,確定了一個(gè)非常明顯的差異——與 KP 肺癌相比,4T1腫瘤呈高度異質(zhì)化分布。肺癌中,幾乎所有的腫瘤病灶都是克隆性的。這暗示著每個(gè)KP腫瘤病灶都是由單個(gè)KP癌細(xì)胞引發(fā)的。
為了進(jìn)一步分析克隆動(dòng)力學(xué),作者在細(xì)胞分割、Pro-Code分配和2D數(shù)字重建后,評(píng)估4T1原發(fā)性腫瘤和KP腫瘤病灶內(nèi)Pro-Code群體之間的共定位。對(duì)于每對(duì) Pro-Code 群體,相對(duì)于細(xì)胞標(biāo)簽的隨機(jī)交換,基于觀(guān)測(cè)到的相鄰的相互作用的數(shù)量,計(jì)算一個(gè)Z-score。 Zscore證實(shí)KP腫瘤是高度克隆的,因?yàn)槊總€(gè)Pro-Code群體都表現(xiàn)出相對(duì)頻繁的同型相互作用[Fig.2b]。盡管4T1細(xì)胞似乎是隨機(jī)分布的,但共定位分析也顯示出一定程度的克隆性。
為了解區(qū)域聚集是如何形成的,作者使用核密度估計(jì)來(lái)可視化Pro-Code陽(yáng)性細(xì)胞的相對(duì)區(qū)域豐度[Fig.2cd]。接下來(lái),使用Pro-Code來(lái)評(píng)估4T1轉(zhuǎn)移的克隆異質(zhì)性。將nPC-4T1注射到乳腺脂肪墊中以產(chǎn)生乳腺腫瘤。四周之后,為了允許肺轉(zhuǎn)移,收集Pro-Codes的肺和染色切片[Fig.2e]。
結(jié)果發(fā)現(xiàn),對(duì)于單個(gè)Pro-Code,許多轉(zhuǎn)移灶是同質(zhì)的,表明它們起源于原發(fā)腫瘤的單個(gè)細(xì)胞。 然而肺中也存在包含Pro-Code表達(dá)細(xì)胞混合物的轉(zhuǎn)移性病灶,這表明多細(xì)胞接種或克隆的初始接種隨后是額外的轉(zhuǎn)移細(xì)胞。
作者比較KP肺、乳腺4T1和肺中4T1轉(zhuǎn)移細(xì)胞的克隆異質(zhì)性[Fig.2f]。證實(shí)了每種腫瘤背景的不同空間模式,KP肺腫瘤具有高克隆性和低混合性,4T1原發(fā)性腫瘤具有彌漫性克隆性,肺中的4T1轉(zhuǎn)移瘤呈克隆性發(fā)展,但相互作用密度也具有雙峰模式,反映了混合轉(zhuǎn)移的存在。
3.Perturb-Map確定了對(duì)免疫編輯和腫瘤結(jié)構(gòu)敏感性的調(diào)節(jié)因子
CRISPR篩選幫助確定了一些與癌癥免疫有關(guān)的基因,但如前所述,目前的方法不適合研究腫瘤免疫學(xué)的許多關(guān)鍵方面,例如免疫細(xì)胞募集和排除。這里,作者嘗試使用Pro-Codes創(chuàng)建一個(gè)用于原位解析CRISPR篩選的平臺(tái)。
作者構(gòu)建了一個(gè)nPC/CRISPR慢病毒載體庫(kù),靶向35個(gè)基因,包括編碼細(xì)胞因子信號(hào)通路的調(diào)節(jié)因子;參與免疫細(xì)胞相互作用的配體和分泌因子等[Fig.3a]。雖然,已知這些基因具有免疫功能,但它們?cè)诜蔚哪[瘤微環(huán)境生物學(xué)中的作用尚未完全確定。 作為對(duì)照,靶向KP細(xì)胞不表達(dá)的F8基因。 對(duì)于35個(gè)基因,使用三種不同的慢病毒轉(zhuǎn)導(dǎo)KP-Cas9,每個(gè)載體表達(dá)相同的nPC,但不同的gRNA靶向相同的基因。通過(guò)CyTOF對(duì)文庫(kù)中特定CRISPR的直接或下游靶標(biāo)的表型分析,表明有效敲除了同源基因。
CRISPR-Cas9一般設(shè)計(jì):
CRISPR在敲除基因的時(shí)候,需要兩個(gè)成分:Cas9核酸酶和gRNA(guide RNA)。
Cas9和gRNA會(huì)形成一個(gè)Cas9核糖體蛋白,這個(gè)核糖體蛋白能結(jié)合到基因組上的靶序列上。 針對(duì)要敲除的某個(gè)基因,CRISPR文庫(kù)通常包含幾種gRNA,處理大量細(xì)胞,使每個(gè)細(xì)胞(平均)受到單個(gè)gRNA的影響。
用慢病毒蛋白對(duì)含有g(shù)RNA質(zhì)粒進(jìn)行包裝,轉(zhuǎn)染目標(biāo)細(xì)胞,然后用嘌呤霉素進(jìn)行篩選,轉(zhuǎn)染成功的細(xì)胞,DNA上會(huì)攜帶一個(gè)gRNA片段(說(shuō)明該gRNA保留在了細(xì)胞中);
對(duì)轉(zhuǎn)染成功的細(xì)胞進(jìn)行培養(yǎng),設(shè)置不同的時(shí)間點(diǎn),提取細(xì)胞的DNA,對(duì)sgRNA進(jìn)行PCR擴(kuò)增,然后通過(guò)高通量測(cè)序,檢測(cè)sgRNA的read count;
實(shí)驗(yàn)會(huì)設(shè)計(jì)多個(gè)timepoint來(lái)觀(guān)測(cè)sgRNA的read count的變化, 根據(jù)不同timepoint上sgRNA read count的不同,分析基因敲除后,對(duì)于該細(xì)胞生長(zhǎng)、增殖的影響。
對(duì)Cas9表達(dá)的小鼠靜脈注射細(xì)胞以播種腫瘤;4 周后,收集肺組織進(jìn)行腫瘤分析[Fig.3b]。通過(guò)MICSSS 對(duì)組織進(jìn)行切片和染色以用于Pro-Code。對(duì)于每個(gè)樣本,用H&E或Pro-Code表位標(biāo)簽特異性抗體對(duì)連續(xù)切片進(jìn)行染色[Fig.3cd]。 然后對(duì)圖像進(jìn)行分割和去條形碼,以識(shí)別每個(gè)腫瘤病灶表達(dá)的Pro-Codes(Fig.3e)。
使用基于密度的噪聲應(yīng)用空間聚類(lèi)(DBSCAN)算法將Pro-Code群體亞聚類(lèi)為離散病灶,并使用alpha形狀推斷腫瘤邊界,然后進(jìn)行手動(dòng)管理(Fig.3e)。
為了確定體內(nèi)是否有任何靶向基因影響腫瘤發(fā)育,作者比較了攜帶特定 nPC/CRISPR 的腫瘤比例與預(yù)注射細(xì)胞混合物中相同 nPC/CRISPR 的相對(duì)頻率[Fig.3f]。
兩個(gè)最耗竭的基因靶點(diǎn)是免疫檢查點(diǎn)Cd274(Pd-l1)和Cd47;相反,B2m靶向病灶顯著富集。同時(shí)作者觀(guān)察到一個(gè)CRISPR靶向干擾素信號(hào)IFNγ的正調(diào)節(jié)因子去富集現(xiàn)象,以及CRISPR靶向Socs1的富集,Socs1是IFNγ信號(hào)的負(fù)調(diào)節(jié)因子。值得注意的是,Tgfbr2靶向病灶在體內(nèi)最豐富,表明KP細(xì)胞上TGFb 受體的缺失增強(qiáng)了腫瘤生長(zhǎng)[Fig.3g]。
除了能夠測(cè)量與基因敲除相關(guān)的腫瘤病灶的數(shù)量和面積外,Perturb-map還可以評(píng)估不同基因如何影響腫瘤結(jié)構(gòu)。為此,病理學(xué)家根據(jù)一系列臨床準(zhǔn)則對(duì)每個(gè)病灶進(jìn)行評(píng)分,這些標(biāo)準(zhǔn)包括癌細(xì)胞的分化程度、病灶的位置和基質(zhì)的組成。根據(jù)包括壞死、纖維化和分化在內(nèi)的特征組合確定不同的腫瘤組織學(xué)類(lèi)型。使用卡方檢驗(yàn)以確定基因擾動(dòng)與病灶組織學(xué)特征之間的顯著關(guān)聯(lián)[Fig.3h,3i]。這些研究表明,Tgfbr2 和Socs1 的缺失以截然不同的方式改變了 KP 肺腫瘤的結(jié)構(gòu),但每一種都賦予了腫瘤生長(zhǎng)優(yōu)勢(shì)。
4.Perturb-Map識(shí)別調(diào)節(jié)TME免疫組成的基因
使用Perturb-map來(lái)研究腫瘤內(nèi)和腫瘤周?chē)煌幕驍_動(dòng)是如何影響免疫細(xì)胞的募集和維持。
除了量化免疫浸潤(rùn)外,作者還評(píng)估了每個(gè)腫瘤病灶內(nèi)免疫細(xì)胞的空間分布[Fig.4f]。 然而在特定的基因的敲除病灶中存在顯著差異[Fig.4i,4k]。
由于Socs1敲除導(dǎo)致KP細(xì)胞上更高的PD-L1,作者假設(shè)局部T細(xì)胞功能障礙可能與觀(guān)察到的 Socs1敲除腫瘤的富集相一致。 為了測(cè)試這一點(diǎn),分別給小鼠注射1:1混合的KP-Cas9-F8-gRNA和KP-Cas9-Socs1-gRNA細(xì)胞,并用抗PD-L1或同種型對(duì)照抗體處理。
轉(zhuǎn)移性病變可以演變出不同的分子狀態(tài),甚至在單個(gè)腫瘤塊內(nèi),遺傳亞克隆也可以形成具有不同TME組成的空間不同區(qū)域; 然而,相鄰的遺傳異質(zhì)區(qū)域如何相互影響尚未得到很好的探索。 作者試圖使用Perturb-map來(lái)研究相鄰腫瘤是否影響彼此的免疫浸潤(rùn)。
這些結(jié)果表明,至少在SOCS1和TGFb通路改變的情況下,在彼此緊密接觸的肺腫瘤病灶中,免疫細(xì)胞的組成和空間排列非常局部地形成。 盡管這可能取決于特定的分子改變,因?yàn)槟承┗虮磉_(dá)變化可能會(huì)產(chǎn)生更遠(yuǎn)的影響,但Perturb-map可以提供一種縮放方法來(lái)評(píng)估特定的基因改變?nèi)绾斡绊懢植?、近端和遠(yuǎn)端TME狀態(tài)。
5.Perturb-Map空間轉(zhuǎn)錄組識(shí)別擾動(dòng)相關(guān)的分子特征
為了進(jìn)一步確定不同基因擾動(dòng)對(duì)腫瘤狀態(tài)的影響,作者將空間轉(zhuǎn)錄組與Perturb-Map結(jié)合。
1. 首先,對(duì)于4個(gè)接種nPC/CRISPR的小鼠肺的切片,使用10X技術(shù)測(cè)序。通過(guò)K-means聚類(lèi)方法將樣本聚類(lèi),然后識(shí)別不同類(lèi)的差異表達(dá)基因,區(qū)分腫瘤病變相對(duì)應(yīng)的空間區(qū)域的特異的基因特征[Fig.5a]。結(jié)果發(fā)現(xiàn),與周?chē)】档姆谓M織相比,腫瘤病變區(qū)域高度表達(dá)特定的角蛋白和上皮標(biāo)志物;以及在KP病灶中發(fā)現(xiàn)IFNg特征。
2. 在腫瘤群體中清晰且特異性地捕獲了Pro-Code轉(zhuǎn)錄本[Fig.5b]。由Pro-Code轉(zhuǎn)錄本定義的對(duì)腫瘤位點(diǎn)的基于圖形聚類(lèi),揭示了肺切片中不同且重復(fù)的腫瘤基因表達(dá)特征[Fig.5c]。和KP腫瘤的克隆發(fā)展一致,給定病灶相對(duì)應(yīng)的空間位置通常聚集在一起,但也有與其他病變明顯聚集在一起的特定病灶。
3. 為了識(shí)別每個(gè)病灶中的基因擾動(dòng),作者通過(guò)成像質(zhì)量流式細(xì)胞術(shù)對(duì)使用金屬結(jié)合抗體染色的肺組織切片進(jìn)行成像?;诮M織內(nèi)nPC/CRISPR的鑒定使用相應(yīng)的基因擾動(dòng)注釋每個(gè)基因特征,并揭示與其他KP腫瘤相比,攜帶CRISPR靶向Tgfbr2或Ifngr2的腫瘤呈現(xiàn)出不同的基因特征[Fig.5d]。
4. 在敲除Tgfbr2腫瘤中,許多相同的ISG也被下調(diào),可能是由于腫瘤的T細(xì)胞排除狀態(tài),并且各種膠原蛋白編碼基因增加。然而,很多上調(diào)的基因表明,TGFβ信號(hào)增加[Fig.5d,5e]。
5. Tgfbr2腫瘤中,TGFb誘導(dǎo)的基因促使我們測(cè)試KP/Tgfbr2 CRISPR細(xì)胞對(duì)TGFβ的反應(yīng)性。證實(shí)它們沒(méi)有響應(yīng)TGFβ激活TGFβ信號(hào)傳導(dǎo),并且TGFBR2在這些細(xì)胞中確實(shí)被功能性敲除。
6. 因此,我們?cè)噲D了解TME中哪些細(xì)胞類(lèi)型,Tgfbr2敲除可能對(duì) TGFβ有反應(yīng)。 使用CytoSig數(shù)據(jù)庫(kù)。在相關(guān)治療和細(xì)胞類(lèi)型對(duì)之間創(chuàng)建代表性基因集,然后進(jìn)行GSEA識(shí)別不同腫瘤簇中的這些特定細(xì)胞因子特征[Fig.5g,5f]。
這些發(fā)現(xiàn)表明,KP肺癌細(xì)胞上Tgfbr2缺失的結(jié)果是腫瘤中TGFb表達(dá)增加以及TME中TGFb通路激活。 這表明在Tgfbr2敲除病灶中觀(guān)察到的基質(zhì)重塑和免疫排斥的潛在機(jī)制是癌癥相關(guān)成纖維細(xì)胞的TGFβ激活。
6. 驗(yàn)證Tgfbr2的缺失導(dǎo)致更具侵襲性和T細(xì)胞排除的KP肺腫瘤
作者試圖確認(rèn)與敲除Tgfbr2腫瘤相關(guān)的Perturb-map表型。為此,作者用靶向 F8(對(duì)照)或Tgfbr2的慢病毒編碼gRNA轉(zhuǎn)導(dǎo)KP-Cas9細(xì)胞并通過(guò)靜脈注射細(xì)胞進(jìn)入小鼠。分別在注射后 7、14 和 28 天采集肺并檢查腫瘤負(fù)荷。
1. 在注射后7天內(nèi)就可以發(fā)現(xiàn),與對(duì)照相比, 敲除Tgfbr2的腫瘤更大、更豐富。該現(xiàn)象在后來(lái)更加明顯。
2. 與Perturb-map 中觀(guān)察到的相似,許多Tgfbr2腫瘤具有纖維粘液基質(zhì)[Fig.6b]。通過(guò)阿新藍(lán)染色嚴(yán)重了這一現(xiàn)象[Fig.6c]。
3. 此外,正如在Perturb-map篩選中觀(guān)察到的,Tgfbr2 腫瘤內(nèi)的 CD4+ 和 CD8+ T 細(xì)胞浸潤(rùn)顯著減少[Fig.6d,6e]。 這證實(shí)了Tgfbr2的缺失重塑了KrasG12D p53null的肺腫瘤的TME。
五、結(jié)論
該研究建立了一種功能基因組學(xué)方法,能夠通過(guò)多重成像和空間轉(zhuǎn)錄組學(xué)在組織內(nèi)解決pooled CRISPR篩選。Perturb-map的一個(gè)關(guān)鍵進(jìn)步是,它拓寬了可以在功能基因組篩選中研究的基因類(lèi)型和基因功能。大多數(shù)基于測(cè)序的pooled篩選方法需要分離細(xì)胞或組織,這會(huì)導(dǎo)致有關(guān)擾動(dòng)如何影響細(xì)胞局部環(huán)境的信息丟失。通過(guò)對(duì)組織中的Pro-Codes 進(jìn)行成像,使我們能夠評(píng)估不同的基因擾動(dòng)如何不僅改變了腫瘤的播種和生長(zhǎng)適應(yīng)性,而且還改變了腫瘤形態(tài)和免疫細(xì)胞募集。
除了研究特定基因功能之外,Perturb-map還使我們能夠檢查特定基因擾動(dòng)和相關(guān)表型如何影響鄰近的腫瘤區(qū)域。這是腫瘤生物學(xué)中一個(gè)相對(duì)未被充分探索的領(lǐng)域,但隨著越來(lái)越多的高分辨率研究報(bào)告了TME的異質(zhì)性以及與腫瘤遺傳學(xué)的關(guān)聯(lián),Perturb-map可以為因果研究提供一種有價(jià)值的手段,以確定特定基因如何影響腫瘤的局部和遠(yuǎn)端區(qū)域。
Ref:Wroblewska A, Dhainaut M, Ben-Zvi B, Rose SA, Park ES, Amir ED, Bektesevic A, Baccarini A, Merad M, Rahman AH, Brown BD. Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens. Cell. 2018
Ref:Mimitou, E.P., Cheng, A., Montalbano, A. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat Methods
Ref:Adamson B, Norman TM, Jost M, Cho MY, Nu?ez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY, Pak RA, Gray AN, Gross CA, Dixit A, Parnas O, Regev A, Weissman JS. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell